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B Noisy labels are wmore affordable,
but result in corrupted
representations , leading to poor
generalization performance.

B To learn robust representations and
handle noisy labels.

@® A Training Examples (Clean) @ A Training Examples (Mislabeled) @ A Test Examples ~— Decision Boundary

4

Figure 1. Left: learning a classifier with ideal representations in-
duced by clean labels; Right: learning a classifier with corrupted
representations caused by noisy labels. Circles represent the repre-
sentations of positive examples while triangles represent the rep-
resentations of negative examples. When the representations are
corrupted by noisy labels, the decision boundary of the classifier
will be largely changed. Therefore, the learned classifier in this
case cannot generalize well on test examples.
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Figure 2. The illustration of the proposed Sel-CL, which progressively selects better confident pairs G for supervised contrastive learning
based on the representation similarity. Without the noise rate prior, confident examples 7 are also obtained to help identify the pairs.
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where V; denotes the neighbor set of K closest instances to where . is a threshold for the c-th class, which is dynam-
x; according to the learned representation. Following [16], ically defined to ensure a class-balanced set of identified
we exploit the cross-entropy loss £ to identify confident ex- conﬁdent examples. To achieve this goal, we use the «
amples. Denoted the set of confident examples belonging to fractile of per-class agreements between the corrected la-

bel 7; and the original label y; across all classes to de-

the c-th class as 7., we have /
termine how many examples should be selected for each

Te = {(i,9:) | £(4(x:), §:)<¥e,i € [n]},c € [C], (3) class, i.e., Y. I[§; = 4[4 = c],c € [C]. Finally, we
can get the confident example set including all classes, i.e.,
_ . C T = U ,7.. This set is less noisy than original noisy

T = Uz 7.

datasets and therefore more reliable.
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where 7y is a dynamic threshold to control the number of

based on the representation similarity. Without the noise rate prior, confident examples 7 are also obtained to help identify the pairs.

identified confident pairs; ¢ and j are two indices sampled
from all training data. To avoid the noise rate estimation of
noisy positive pairs, we utilize the reliable information of 7~
to set v. In more detail, the 3 fractile of the representation
similarities of the pairs in G’ is used here. Finally, we can
get the confident pair set G = G’ U G".
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Representation Learning with Selected Pairs

« Contrastive learning:

(6)

Z Z log exp (2; - zg/T)
D acA(i) €XP (i 2a/T)

g€9 (i)

where A(i) means the set of indices excluding i, i.e.,
A(i) = I\{i}; 6(0) = {919 € A(i),Pry €G}, and ¥/
and ¢’ are the original indices of x; and x, in D, respec-
tively. 7 € R* is a temperature parameter. Note that ex-
pect for the examples that are involved in selected confident
pairs, for the other examples, we perform unsupervised con-
trastive learning [ 7] on them.

L) = X () £ (1 — X)Ls(2:)s (7)

where £, and £ have the same form as £; in Eq. 6. It

A € [0,1] ~ Beta(a,, o)
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Figure 2. The illustration of the proposed Sel-CL, which progressively selects better confident pairs G for supervised contrastive learning
based on the representation similarity. Without the noise rate prior, confident examples 7 are also obtained to help identify the pairs.
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Representation Learning with Selected Pairs

* Classification learning:
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Figure 2. The illustration of the proposed Sel-CL, which progressively selects better confident pairs G for supervised contrastive learning
based on the representation similarity. Without the noise rate prior, confident examples 7 are also obtained to help identify the pairs.
EALL — EMIX 5 ACECLS 4 ASESH\/I:| (10)

where \. and A, are loss weights, which we set as A\, =
1, As = 0.01 in all experiments. Note that, by alternately
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Table 1. Noise detection fractiles on simulated noisy CIFAR-10

and CIFAR-100.

Fractiles CIFAR-10 CIFAR-100
Sym. | Asym. | Sym. | Asym.

o 50% 50% 75% 25%

I5; 25% 25% 35% 0%

Table 2. Weighted KNN evaluations (%) on CIFAR-100. The best

results are in bold.

Clean Symmetric Asymmetric
Bisihnds 0% | 20% | 80% | 10% | 40%
UnsCL[/] | 56.23 | - - - _
Sup-CL [27] | 72.66 | 58.32 | 41.00 | 71.11 | 68.00
MOIT [41] | 77.48 | 67.42 | 55.58 | 74.86 | 72.60
Sel-CL | 77.94 | 75.36 | 62.49 | 76.77 | 72.71
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Table 3. Comparison with state-of-the-art methods in the test accuracy (%) on CIFAR-10 and CIFAR-100. The best results are in bold.

Dataset CIFAR-10 CIFAR-100
. Symmetric Asymmetric Symmetric Asymmetric

MitbodsNousmie 7% S0% §0% 90% | T0% 20% 0% 5% [20% 0% 0% 90% | 10% 20% 30% F0%
Cross-Entropy 82.7 579 26.1 168|888 86.1 81.7 760|618 373 88 35 |68.1 636 533 445
Mixup [61] 92.3 77.6 46.7 439|933 88.0 833 777|660 466 17.6 8.1 |724 651 57.6 48.1
Forward [3] 83.1 594 262 188|904 867 819 767|614 373 90 34 687 632 544 453
GCE [64] 86.6 81.9 54.6 212(89.5 856 80.6 76.0|592 47.8 158 72 [68.0 586 514 42.9
P-correction [59] 92.0 88.7 76.5 582931 929 92.6 91.6|68.1 564 20.7 8.8 [76.1 689 593 483
M-correction [ 1] 93.8 91.9 86.6 68.7(89.6 918 922 912|734 654 47.6 20.5|67.1 64.5 586 47.4
DivideMix [30] 95.0 93.7 92.4 742(938 932 925 914|748 72.1 57.6 29.2|69.5 692 68.3 51.0
ELR [37] 93.8 92.6 88.0 633|944 933 9L5 853|745 702 452 20.5|758 748 73.6 70.0
GCE (Uns-CLinit.) [13][90.0 89.3 73.9 365 |91.1 87.3 822 78.1|68.1 533 22.1 89 [702 602 52.6 44.1
ELR (Uns-CL init.) 944 93.0 883 862950 947 944 933|762 719 57.9 408|772 755 743 70.4
MOIT+ [ 1] 04.1 91.8 8L1 747|942 943 943 933|759 70.6 47.6 418|774 764 75.1 74.0
Sel-CL+ 955 939 89.2 819|956 952 94.5 934|765 724 59.6 48.8|78.7 775 764 74.2
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Table 5. Accuracy (%) on the WebVision and ILSVRC2012 val-
idation sets. The model is trained on WebVision-50. The best
results are in bold.

Table 6. Ablation study for Sel-CL and Sel-CL+ on CIFAR-100.

WebVision ILSVRCI2
Methods top-1 | top-5 | top-1 | top-5 The best results are in bold.
Forward [12] 61.12 | 82.68 | 57.36 | 82.36
Decoupling [40] 62.54 | 84.74 | 58.26 | 82.26 Methods Sym. 20% | Asym. 40%
D2L [39] 62.68 | 84.00 | 57.80 | 81.36 Sel-CL w/o Mixup Data Aug. 70.3/70.6 64.2/66.2
MentorNet [26] 63.00 | 81.40 | 57.80 | 79.92 Sel-CL w/o MOCO Trick 73.3/74.1 69.2/71.5
Co-teaching [10] 63.58 | 85.20 | 61.48 | 84.70 Sel-CL w/o Selection 67.2/68.9 49.9/68.7
Iterative-CV [6] 65.24 | 85.34 | 61.60 | 84.98 Sel-CL w/o Classfier Learning —/69.9 — 1509
DivideMix [30 7732 | 91.64 | 75.20 | 90.84 SIM
o ] i e = Sel-CL w/o £ 74.5/749 | 71.8/72.5
ELR+ [37] 77.78 | 91.68 | 70.29 | 89.76 Sel-CL 74.9/754 | T72.0/72.7
ELR (Uns-CL init.) | 79.93 | 92.00 | 71.23 | 8823 Sel-CL+ w/ Strong Data Aug. #aS 12.7
ProtoMix [31] 763 | 91.5 | 733 | 91.2 Sel-CL+ w/o Retraining Cls. 76.4 73.4
MoPro [37] 171.59 — 76.31 - Sel-CL+ 76.5 74.2
NGC [51] 79.16 | 91.84 | 74.44 | 91.04
Sel-CL+ 79.96 | 92.64 | 76.84 | 93.04
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Table 7. Comparison with different warm-up methods in the test
accuracy (%) of Sel-CL+.

Dataset CIFAR-10 CIFAR-100
Noise type Sym. Asym. Sym. Asym.
Noise rate 20% | 90% | 40% | 20% | 90% | 40%
Uns-CL[7] | 955 | 819 | 934 | 765 | 48.8 | 742
Sup-CL [27] | 95.5 | 81.6 | 934 | 768 | 514 | 745

Table 8. Comparison with using different fine-tuning methods in
the test accuracy (%). The best results are in bold.

Dataset CIFAR-10 CIFAR-100
Noise type Sym. | Asym. | Sym. | Asym.
Noise rate 20% | 40% | 20% | 40%
DivideMix [30] 957 | 921 | 769 | 53.8
ELR+ [37] 946 | 930 | 775 | 722
DivideMix (Uns-CL init.) [65] | 96.2 | 90.8 | 78.3 | 52.9
ELR+ (Uns-CL init.) [65] 948 | 943 | 77.7 | 723
DivideMix (Sel-CL init.) 96.3 | 916 | 787 | 55.2
ELR+ (Sel-CL init.) 952 | 946 | 777 | 729
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Table 9. Comparesion with one-stage methods in the test accuracy

(%). 7 denotes fine-tuning using AugMix data augmentation. The
best results are in bold.

Dataset CIFAR-10 CIFAR-100
Noise type Sym. Asym. Sym. Asym.
Noise rate 20% | 90% | 40% | 20% | 90% | 40%
ProtoMix [31] | 95.8 | 75.0 | 919 | 79.1 | 29.3 | 48.8

NGC [51] 959 | 80.5 | 90.6 | 79.3 | 29.8 =
Sel-CL+ 954 | 675 | 928 | 764 | 35.5 | 74.2
Sel-CL+" 952 | 67.4 | 925 | 760 | 354 | 74.2

Table 10. Comparison with different example selection strategies
in the test accuracy/label precsion (%) of Sel-CL+.

Noise type Sym. Asym.

Noise rate 20% 90% 20% 40%

w pseudo-labels | 76.5/99.1 | 48.8/62.0 | 77.5/971.5 | 74.2/92.2
w/o pseudo-labels | 76.5/99.1 | 46.2/55.4 | 76.8/96.6 | 69.4/83.9
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